4.7 Article

Exosome-Mimetic Nanovesicles from Hepatocytes promote hepatocyte proliferation in vitro and liver regeneration in vivo

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-20505-y

关键词

-

资金

  1. National Basic Research Program of China (973 Program) [2013CB834100]
  2. National Natural Science Foundation of China [81472820, 81572393, 81602054, 81602093]
  3. Medical Science and Technology Development Foundation
  4. Nanjing Municipality Health Bureau [ZKX15020]
  5. Natural Science Foundation of Jiangsu Province [BK20141324, BK20160118]
  6. Jiangsu special program for clinical medical science and technology [BL2014054]

向作者/读者索取更多资源

The liver has great regenerative capacity after functional mass loss caused by injury or disease. Many studies have shown that primary hepatocyte-derived exosomes, which can deliver biological information between cells, promote the regenerative process of the liver. However, the yield of exosomes is very limited. Recent studies have demonstrated that exosome-mimetic nanovesicles (NVs) can be prepared from cells with almost 100 times the production yield compared with exosomes. Thus, this study investigated the therapeutic capacity of exosome-mimetic NVs from primary hepatocytes in liver regeneration. Exosome-mimetic NVs were prepared by serial extrusions of cells through polycarbonate membranes, and the yield of these NVs was more than 100 times that of exosomes. The data indicated that the NVs could promote hepatocyte proliferation and liver regeneration by significantly enhancing the content of sphingosine kinase 2 in recipient cells. To the best of our knowledge, this is the first time that exosome-mimetic NVs from primary hepatocytes have been prepared, and these NVs have components similar to exosomes from primary hepatocytes and, in some respects, biofunctions similar to exosomes. Strategies inspired by this study may lead to substitution of exosomes with exosome-mimetic NVs for biofunctional purposes, including utilization in tissue repair and regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据