4.7 Article

Perfect meta-absorber by using pod-like nanostructures with ultra-broadband, omnidirectional, and polarization-independent characteristics

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-25728-7

关键词

-

资金

  1. 100 Talents Program of Sun Yat-Sen University [76120-18821107]
  2. State Key Laboratory of Optoelectronic Materials and Technologies of Sun Yat-Sen University

向作者/读者索取更多资源

The on-chip perfect meta-absorber (PMA) is an important optical and thermal energy component in photovoltaics, thermal emitters, and energy harvesting applications. However, most reported PMAs rely on the complicated lithography techniques, which imposed a serious cost barrier on the development of practical applications, especially in the visible to near-infrared (NIR) wavelength range and at very large scales. Importantly, it is hard to realize PMA in the UV wavelength range by using current lithography techniques. In this article, we develop an ultra-broadband PMA by using natural lithography (NL) technique. The morphology of proposed PMA is randomly distributed pod-like nanostructures composed of a nanocomposite (Au/SiO2) covered a gold layer. It can be formed easily on Si substrate to function as an ultra-broadband, omnidirectional, and polarization-independent PMA by controlling the conditions of sputtering deposition and thermal annealing treatment. We experimentally realized an on-chip ultra-broadband PMA with almost 100% absorption spanned from UV-visible to NIR wavelength ranges. This cost-effective and high-efficiency approach would release the manufacturing barrier for previously reported PMAs and therefore open an avenue to the development of effectively energy harvesting, energy recycling, and heat liberation applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据