4.7 Article

Vertical-type two-dimensional hole gas diamond metal oxide semiconductor field-effect transistors

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-018-28837-5

关键词

-

资金

  1. JSPS [JP26220903]
  2. NIMS Nanofabrication Platform in Nanotechnology Platform Project - Ministry of Education, Culture, Science and Technology ( MEXT), Japan
  3. Project of Creation of Life Innovation Materials for Interdisciplinary and International Researcher Development of MEXT

向作者/读者索取更多资源

Power semiconductor devices require low on-resistivity and high breakdown voltages simultaneously. Vertical-type metal-oxide-semiconductor field-effect transistors (MOSFETs) meet these requirements, but have been incompleteness in diamond. Here we show vertical-type p-channel diamond MOSFETs with trench structures and drain current densities equivalent to those of n-channel wide bandgap devices for complementary inverters. We use two-dimensional hole gases induced by atomic layer deposited Al2O3 for the channel and drift layers, irrespective of their crystal orientations. The source and gate are on the planar surface, the drift layer is mainly on the sidewall and the drain is the p(+) substrate. The maximum drain current density exceeds 200 mA mm(-1) at a 12 mu m source-drain distance. On/off ratios of over eight orders of magnitude are demonstrated and the drain current reaches the lower measurement limit in the off-state at room temperature using a nitrogen-doped n-type blocking layer formed using ion implantation and epitaxial growth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据