4.7 Article

Computational identification of specific genes for glioblastoma stem-like cells identity

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-018-26081-5

关键词

-

资金

  1. Epigenomics Flagship Project (Progetto Bandiera Epigenomica) EPIGEN - Italian Ministry of Education, University and Research (MIUR)
  2. National Research Council of Italy (CNR)
  3. SysBioNet, Italian Roadmap Research Infrastructures

向作者/读者索取更多资源

Glioblastoma, the most malignant brain cancer, contains self-renewing, stem-like cells that sustain tumor growth and therapeutic resistance. Identifying genes promoting stem-like cell differentiation might unveil targets for novel treatments. To detect them, here we apply SWIM - a software able to unveil genes (named switch genes) involved in drastic changes of cell phenotype - to public datasets of gene expression profiles from human glioblastoma cells. By analyzing matched pairs of stem-like and differentiated glioblastoma cells, SWIM identified 336 switch genes, potentially involved in the transition from stem-like to differentiated state. A subset of them was significantly related to focal adhesion and extracellular matrix and strongly down-regulated in stem-like cells, suggesting that they may promote differentiation and restrain tumor growth. Their expression in differentiated cells strongly correlated with the down-regulation of transcription factors like OLIG2, POU3F2, SALL2, SOX2, capable of reprogramming differentiated glioblastoma cells into stem-like cells. These findings were corroborated by the analysis of expression profiles from glioblastoma stem-like cell lines, the corresponding primary tumors, and conventional glioma cell lines. Switch genes represent a distinguishing feature of stem-like cells and we are persuaded that they may reveal novel potential therapeutic targets worthy of further investigation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据