4.7 Article

Structure and hydrogen bonding at the limits of liquid water stability

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-017-18975-7

关键词

-

资金

  1. NPL Strategic Research programme
  2. STFC Hartree Centre's Innovation Return on Research programme
  3. Scottish Doctoral Training Centre in Condensed Matter Physics
  4. NPL Postgraduate Institute
  5. EPSRC under an Industrial CASE studentship
  6. Engineering and Physical Sciences Research Council [EP/M022617/1] Funding Source: researchfish
  7. EPSRC [EP/M022617/1] Funding Source: UKRI

向作者/读者索取更多资源

Liquid water exhibits unconventional behaviour across its wide range of stability - from its unusually high liquid-vapour critical point down to its melting point and below where it reaches a density maximum and exhibits negative thermal expansion allowing ice to float. Understanding the molecular underpinnings of these anomalies presents a challenge motivating the study of water for well over a century. Here we examine the molecular structure of liquid water across its range of stability, from mild supercooling to the negative pressure and high temperature regimes. We use a recently-developed, electronically-responsive model of water, constructed from gas-phase molecular properties and incorporating many-body, long-range interactions to all orders; as a result the model has been shown to have high transferability from ice to the supercritical regime. We report a link between the anomalous thermal expansion of water and the behaviour of its second coordination shell and an anomaly in hydrogen bonding, which persists throughout liquid water's range of stability - from the high temperature limit of liquid water to its supercooled regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据