4.7 Article

AmPEP: Sequence-based prediction of antimicrobial peptides using distribution patterns of amino acid properties and random forest

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-018-19752-w

关键词

-

资金

  1. University of Macau [MYRG2015-00212-FST, MYRG2016-00217-FST]

向作者/读者索取更多资源

Antimicrobial peptides (AMPs) are promising candidates in the fight against multidrug-resistant pathogens owing to AMPs' broad range of activities and low toxicity. Nonetheless, identification of AMPs through wet-lab experiments is still expensive and time consuming. Here, we propose an accurate computational method for AMP prediction by the random forest algorithm. The prediction model is based on the distribution patterns of amino acid properties along the sequence. Using our collection of large and diverse sets of AMP and non-AMP data (3268 and 166791 sequences, respectively), we evaluated 19 random forest classifiers with different positive: negative data ratios by 10-fold cross-validation. Our optimal model, AmPEP with the 1:3 data ratio, showed high accuracy (96%), Matthew's correlation coefficient (MCC) of 0.9, area under the receiver operating characteristic curve (AUC-ROC) of 0.99, and the Kappa statistic of 0.9. Descriptor analysis of AMP/non-AMP distributions by means of Pearson correlation coefficients revealed that reduced feature sets (from a full-featured set of 105 to a minimal-feature set of 23) can result in comparable performance in all respects except for some reductions in precision. Furthermore, AmPEP outperformed existing methods in terms of accuracy, MCC, and AUC-ROC when tested on benchmark datasets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据