4.7 Article

Highly Interactive Brain-Computer Interface Based on Flicker-Free Steady-State Motion Visual Evoked Potential

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-018-24008-8

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [51475360]
  2. Science Fund of State Key Laboratory for Manufacturing Systems Engineering of Xi'an Jiaotong University of China [sklms2016008]

向作者/读者索取更多资源

Visual evoked potential-based brain-computer interfaces (BCIs) have been widely investigated because of their easy system configuration and high information transfer rate (ITR). However, the uncomfortable flicker or brightness modulation of existing methods restricts the practical interactivity of BCI applications. In our study, a flicker-free steady-state motion visual evoked potential (FF-SSMVEP)-based BCI was proposed. Ring-shaped motion checkerboard patterns with oscillating expansion and contraction motions were presented by a high-refresh-rate display for visual stimuli, and the brightness of the stimuli was kept constant. Compared with SSVEPs, few harmonic responses were elicited by FF-SSMVEPs, and the frequency energy of SSMVEPs was concentrative. These FF-SSMVEPs evoked single fundamental peak responses after signal processing without harmonic and subharmonic peaks. More stimulation frequencies could thus be selected to elicit more responding fundamental peaks without overlap with harmonic peaks. A 40-target online SSMVEP-based BCI system was achieved that provided an ITR up to 1.52 bits per second (91.2 bits/min), and user training was not required to use this system. This study also demonstrated that the FF-SSMVEP-based BCI system has low contrast and low visual fatigue, offering a better alternative to conventional SSVEP-based BCIs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据