4.7 Article

Dynamic all-optical drug screening on cardiac voltage-gated ion channels

期刊

SCIENTIFIC REPORTS
卷 8, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-19412-z

关键词

-

资金

  1. Swiss National Science foundation [31003A_152807]
  2. Swiss National Science Foundation (SNF) [31003A_152807] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

Voltage-gated ion channels (VGCs) are prime targets for the pharmaceutical industry, but drug profiling on VGCs is challenging, since drug interactions are confined to specific conformational channel states mediated by changes in transmembrane potential. Here we combined various optogenetic tools to develop dynamic, high-throughput drug profiling assays with defined light-step protocols to interrogate VGC states on a millisecond timescale. We show that such light-induced electrophysiology (LiEp) yields high-quality pharmacological data with exceptional screening windows for drugs acting on the major cardiac VGCs, including hNa(v)1.5, hK(v)1.5 and hERG. LiEp-based screening remained robust when using a variety of optogenetic actuators (ChR2, ChR2(H134R), CatCh, ChR2-EYFP-beta ArchT) and different types of organic (RH421, Di-4-ANBDQPQ, BeRST1) or genetic voltage sensors (QuasAr1). The tractability of LiEp allows a versatile and precise alternative to state-of-the-art VGC drug screening platforms such as automated electrophysiology or FLIPR readers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据