4.6 Article

Characteristics of a CaSO4 composite oxygen carrier supported with an active material for in situ gasification chemical looping combustion of coal

期刊

RSC ADVANCES
卷 8, 期 41, 页码 23372-23381

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ra03425g

关键词

-

资金

  1. National Natural Science Foundation of China [51506105]
  2. Key Research and Development Plan of Shandong Province [2017GSF16101]
  3. Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering [201603]

向作者/读者索取更多资源

CaSO4 is considered to be a potential oxygen carrier for chemical-looping combustion (CLC) due to its cheapness and high oxygen transport capacity. To improve the physicochemical stability of the CaSO4 oxygen carrier, CaSO4 composite oxygen carriers supported with clay, cement, and ash separately were prepared. It was found that the attrition resistance of the CaSO4 oxygen carrier composed of clay and cement improved due to the bond action of clay and cement. The reactivity of the composite oxygen carrier with coal was investigated in a thermogravimetric analyser (TGA) and fluidised bed. Sulphurous gas products were analysed by mass spectrometry (TG-MS) and gas chromatography (GC). Based on the catalysis of the active components in clay, cement and ash, the reaction rate of CaSO4 with coal was improved by the active materials. However, the side reaction generating the sulphurous gas was severe in both the reduction and oxidation stages, especially when using steam as the gasifying agent. To enhance the regeneration, the CaSO4/clay composite oxygen carrier was upgraded by adding CaO. It was demonstrated that SO2 release can be restrained in both the reduction and oxidation stages when the mass ratio of CaO to the CaSO4/clay composite oxygen carrier was higher than 1. At this point, the corresponding oxygen transport capacity was about 14.1 wt%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据