4.6 Article

Thermal decomposition behavior and kinetics for pyrolysis and catalytic pyrolysis of Douglas fir

期刊

RSC ADVANCES
卷 8, 期 4, 页码 2196-2202

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ra12187c

关键词

-

资金

  1. Agriculture and Food Research Initiative of National Institute of Food and Agriculture, United States Department of Agriculture [2016-67021-24533, 2016-33610-25904]
  2. Washington State University Office of Commercialization
  3. Washington Research Foundation
  4. Anhui Provincial Natural Science Foundation of China [1708085QC66]
  5. Fundamental Research Funds for the Central Universities, China [JZ2016HGBZ0788]
  6. Office of the President in conjunction with the Vice President of Research
  7. Office of the Provost in conjunction with the Vice President of Research

向作者/读者索取更多资源

In this study, the thermal decomposition behavior and kinetics of pyrolysis and catalytic pyrolysis of Douglas fir (DF) were investigated using thermogravimetric (TG) analysis. It was found that the heating rate was an important factor during the biomass pyrolysis process, it affected the pyrolysis though heat transfer and mass transfer through the biomass particles. The differential thermogravimetric (DTG) curves demonstrated that the role of the catalyst was to slightly reduce the temperature of biomass thermal degradation. We obtained the thermal data including the activation energy, frequency factor and reaction order by Coats-Redfern and Friedman methods. For the Coats-Redfern method, we found that the activation energy of the catalytic pyrolysis was lower than that of the non-catalytic pyrolysis. It means that the ZSM-5 catalyst increased the rate of reaction and reduced the energy required for the decomposition process. Meanwhile, the result from the Friedman method demonstrated that the reaction could be divided into two steps, which were reaction rate between 0.2 and 0.7 and a reaction rate of 0.8 based on parallelism. Addition of the ZSM-5 catalyst reduced the activation energy in the first region then increased it in the second region due to the secondary cracking of intermediate compounds which was highly affected by shape-selective catalysis. Simulation of pyrolysis and catalytic pyrolysis of DF using the obtained kinetic parameters was in good agreement with the experimental data. Py-GC/MS analysis was also carried out and indicated that the ZSM-5 catalyst had a highly positive effect on aromatic hydrocarbon production by significantly reducing oxygen-containing compounds (i.e. acids, esters, ketones/aldehydes and guaiacols) during the catalytic pyrolysis of DF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据