4.6 Article

Effect of a pH-controlled co-precipitation process on rhodamine B adsorption of MnFe2O4 nanoparticles

期刊

RSC ADVANCES
卷 8, 期 12, 页码 6709-6718

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ra13570j

关键词

-

资金

  1. Thailand Graduate Institute of Science and Technology Development Agency (TGIST)
  2. National Science and Technology Development Agency (NSTDA)
  3. Center of Excellence in Materials Science and Technology, Chiang Mai University

向作者/读者索取更多资源

We investigated the effect of a pH-controlled co-precipitation process on the adsorption behavior of manganese ferrite (MnFe2O4) nanoparticles as well as their structural and magnetic properties. The pH of prepared MnFe2O4 nanoparticles is typically an important factor affecting the adsorption capacity of an adsorbent. In this study, MnFe2O4 nanoparticles were prepared using a co-precipitation method at four different pH values of 9.0, 9.5, 10.0, and 10.5. The adsorption behaviors on rhodamine B (RhB) by MnFe2O4 nanoparticles prepared at different pH values were investigated. It was found that, via a pH-controlled process, MnFe2O4 nanoparticles prepared at pH 10.5 showed the highest RhB removal efficiency. The results indicated that the large pore size and surface charge of MnFe2O4 nanoparticles improved the adsorption capacities for RhB. Kinetic data were fitted to a pseudo-second order kinetic model and revealed that equilibrium was reached within 60 min. The isotherm data showed that the Langmuir maximum adsorption capacity of the MnFe2O4 nanoparticles prepared at pH 10.5 for RhB was 9.30 mg g(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据