4.6 Article

Interface engineering of graphene-silicon Schottky junction solar cells with an Al2O3 interfacial layer grown by atomic layer deposition

期刊

RSC ADVANCES
卷 8, 期 19, 页码 10593-10597

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7ra13443f

关键词

-

资金

  1. Masdar Institute (part of Khalifa University of Science and Technology)

向作者/读者索取更多资源

The recent progress in graphene (Gr)/silicon (Si) Schottky barrier solar cells (SBSC) has shown the potential to produce low cost and high efficiency solar cells. Among the different approaches to improve the performance of Gr/Si SBSC is engineering the interface with an interfacial layer to reduce the high recombination at the graphene (Gr)/silicon (Si) interface and facilitate the transport of photo-generated carriers. Herein, we demonstrate improved performance of Gr/Si SBSC by engineering the interface with an aluminum oxide (Al2O3) layer grown by atomic layer deposition (ALD). With the introduction of an Al2O3 interfacial layer, the Schottky barrier height is increased from 0.843 V to 0.912 V which contributed to an increase in the open circuit voltage from 0.45 V to 0.48 V. The power conversion efficiency improved from 7.2% to 8.7% with the Al2O3 interfacial layer. The stability of the Gr/Al2O3/Si devices was further investigated and the results have shown a stable performance after four weeks of operation. The findings of this work underpin the potential of using an Al2O3 interfacial layer to enhance the performance and stability of Gr/Si SBSC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据