4.6 Review

Bioinspired temporal supramolecular polymerization

期刊

RSC ADVANCES
卷 8, 期 34, 页码 18913-18925

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8ra03225d

关键词

-

资金

  1. FRS
  2. JNCASR, Sheikh Saqr Laboratory (SSL), Nanomission, DST [SR/NM/TP-25/2016]
  3. Department of Science and Technology, Government of India
  4. CSIR

向作者/读者索取更多资源

Thriving natural systems precisely regulate their complex chemical organizations in space and time by recruitment of a complex network of fuel-driven, kinetically controlled, out-of-equilibrium transformations. Indeed this provides an active, adaptive and autonomous smart actions & functions. In contrast, synthetic systems exhibit simpler behavior owing to thermodynamically driven supramolecular polymerization with no temporal modulation of spatial organization. Stimulated by an outstanding control that nature demonstrates, a drive towards artificial out-of-equilibrium systems with the ambition to program activation and duration of structural transformations has emerged. To realize this vision, overwhelming efforts across the globe have been initiated to design temporally programmed synthetic supramolecular polymers. In an attempt to contribute to this trending field, our supramolecular chemistry group has thoroughly investigated a structure-property relationship that determines the mechanism of supramolecular polymerization. Exploiting these mechanistic insights, along with a bio-inspired fuel-driven enzyme mediated approach, we further attempted to program supramolecular polymers in both structural and temporal regimes. We believe, nature is the inspiration to the current era challenges and it also provides with the solution, a fuel-driven approach to address these. In this account, we shall discuss the efforts made by our group to build generic concept to create temporally programmable supramolecular polymers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据