4.7 Article

Super-Resolution of Hyperspectral Images: Use of Optimum Wavelet Filter Coefficients and Sparsity Regularization

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2014.2346811

关键词

Hyperspectral; regularization; sparsity; super-resolution (SR); wavelet

向作者/读者索取更多资源

Hyperspectral images (HSIs) have high spectral resolution, but they suffer from low spatial resolution. In this paper, a new learning-based approach for super-resolution (SR) using the discrete wavelet transform (DWT) is proposed. The novelty of our approach lies in designing application-specific wavelet basis (filter coefficients). An initial estimate of SR is obtained by using these filter coefficients while learning the high-frequency details in the wavelet domain. The final solution is obtained using a sparsity-based regularization framework, in which image degradation and the sparseness of SR are estimated using the estimated wavelet filter coefficients (EWFCs) and the initial SR estimate, respectively. The advantage of the proposed algorithm lies in 1) the use of EWFCs to represent an optimal point spread function to model image acquisition process; 2) use of sparsity prior to preserve neighborhood dependencies in SR image; and 3) avoiding the use of registered images while learning the initial estimate. Experiments are conducted on three different kinds of images. Visual and quantitative comparisons confirm the effectiveness of the proposed method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据