4.7 Article

Multimodal selenium nanoshell-capped Au@mSiO2 nanoplatform for NIR-responsive chemo-photothermal therapy against metastatic breast cancer

期刊

NPG ASIA MATERIALS
卷 10, 期 -, 页码 197-216

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41427-018-0034-5

关键词

-

资金

  1. National Research Foundation of Korea (NRF) grant - Korea government (MSIP) [2015R1A2A2A01004118, 2015R1A2A2A04004806]
  2. Medical Research Center Program through the NRF - MSIP [2015R1A5A2009124]
  3. National Research Foundation of Korea [2015R1A2A2A01004118, 2015R1A5A2009124, 22A20154413174, 2015R1A2A2A04004806] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Multimodal therapeutic agents based on novel nanomaterials for multidrug resistance have attracted increasing attention in cancer therapy. In this study, we describe the construction of a programmed mesoporous silica-capped gold nanorod covered with nano-selenium overcoat (Se@Au@mSiO(2)) nanoparticles as a multifunctional nanoplatform to incorporate materials with specific chemotherapeutic, chemoprevention, and photoablation/hyperthermia functions that collectively contribute to enhance anticancer efficacy in multidrug-resistant breast cancer. The triple-combination-based nanosized Se@Au@mSiO(2)/DOX effectively accumulates in the tumor and the release of the therapeutic cargo could be remotely manipulated by mild near-infrared (NIR) irradiation. Se@Au@mSiO(2)/DOX notably enhances the cell killing effect through induction of cell apoptosis. In addition, Se@Au@mSiO(2)/DOX inhibits tumor cell growth through cell cycle arrest and induction of apoptosis via suppression of the Src/FAK/AKT signaling pathways. Synergistic Se-photothermal-chemotherapy combination exhibits significant tumor growth suppression and delayed tumor progression in vivo. Immunohistochemistry analysis shows elevated numbers of caspase-3 and PARP-immunolabeled cells and decreased Ki-67 + and CD31 + cancer cells in the tumor mass. No noticeable signs of organ damage or toxicity are observed after treatment with Se@Au@mSiO2/DOX (NIR+), which is further supported by hematology and biochemical analyses. Thus, Se@Au@mSiO2/DOX has potential for the clinical treatment of metastatic breast cancers with little or no adverse effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据