4.7 Article

An Ocean Wind Doppler Model Based on the Generalized Curvature Ocean Surface Scattering Model

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2015.2445057

关键词

Doppler measurements; geophysical measurement techniques; sea surface; synthetic aperture radar (SAR)

资金

  1. Tromso County Regional Development Fund

向作者/读者索取更多资源

A Doppler centroid D-C model based on the generalized curvature ocean surface scattering model (generalized curvature model or GCM) is presented. Two key features are included in this model: a skewness-related phase coefficient based on empirical skewness coefficients of sea-surface-slope probability density function (pdf) for wind speed less than 10 m/s and effects from wave breaking for wind speed greater than 10 m/s. Simulated D-c values are exclusively compared with the empirical geophysical Doppler model function named CDOP, for hh and vv polarizations, various wind conditions, and incidence angles. Good agreement is found overall between CDOP and simulated D-C values. The overall bias for simulated Dc-vv with and without skewness are 2.63 versus -0.51 Hz (14.6 versus -2.8 cm/s), respectively; overall standard deviations are 2.76 versus 3.53 Hz (15.3 versus 19.6 cm/s). For simulated DC-hh, overall bias values with and without skewness are -0.16 versus -2.52 Hz (-0.9 versus -14 cm/s); standard deviations are 3.56 versus 4.32 Hz (19.7 versus 24 cm/s). The overall bias for simulated Dc-vv with and without the wave breaking component are -0.08 versus 0.12 Hz (-0.4 versus 0.7 cm/s), respectively; corresponding standard deviations are 3.32 versus 4.75 Hz (18.4 versus 26.3 cm/s). Bias values for simulated Dc-vv with and without the wave breaking component are -1.83 versus -2.02 Hz (-10.2 versus -11.2 cm/s), with corresponding overall standard deviations of 3.43 versus 4.87 Hz (19 versus 27 cm/s). The largest deviation from CDOP, of about 18 Hz (0.99 m/s), is found in the upwind direction for a 26 incidence angle, 10-m/s wind speed, and hh polarization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据