4.7 Article

Probiotic attributes and prevention of LPS-induced pro-inflammatory stress in RAW264.7 macrophages and human intestinal epithelial cell line (Caco-2) by newly isolated Weissella cibaria strains

期刊

FOOD & FUNCTION
卷 9, 期 2, 页码 1254-1264

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7fo00469a

关键词

-

资金

  1. National Agri-Food Biotechnology Institute
  2. Department of Biotechnology Government of India

向作者/读者索取更多资源

Probiotic lactic acid bacteria are known to modulate gut associated immune responses. Not many studies have reported on the role of Weissella species in preventing lipopolysaccharide (LPS) induced proinflammatory stress in murine macrophages as well as in human intestinal epithelial cells (Caco-2). Therefore, the present study was taken up to evaluate the probiotic attributes of four newly isolated Weissella strains (two each from fermented dosa batter and a human infant faecal sample); these attributes are cholesterol reduction, adhesion to Caco-2 cells and mucin and their ability to prevent LPS-induced nitric oxide and proinflammatory cytokine (IL-6, IL-1 beta and TNF alpha) production by the murine macrophages and IL-8 production by the human epithelial cells. Reduction in LPS induced pro-inflammatory stress was compared with a well-studied probiotic bacterium Lactobacillus rhamnosus GG. The results suggested that the strains were tolerant to gastric conditions (pH 3.0) and bile salts. In addition, the strains exhibited moderate cell surface hydrophobicity, cholesterol reduction and adhesion to Caco-2 cells and gastric mucin. All the strains could prevent LPS-induced nitric oxide and IL-6 production in murine macrophages, while strain 28 alone prevented IL-1 beta production. All the strains could prevent IL-8 production by the human epithelial cells. The present study led to the first line selection of W. cibaria 28 as a putative strain for future studies as it showed adhesion to Caco-2 cells and gastric mucin and cholesterol reduction besides preventing LPS-induced pro-inflammatory stress in macrophages and in human colonic epithelial cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据