4.5 Article

Targeting glucose transport and the NAD pathway in tumor cells with STF-31: a re-evaluation

期刊

CELLULAR ONCOLOGY
卷 41, 期 5, 页码 485-494

出版社

SPRINGER
DOI: 10.1007/s13402-018-0385-5

关键词

Fasentin; Glucose transporter; GMX1778; NAMPT; STF-31; WZB117

向作者/读者索取更多资源

Background Targeting glucose metabolism is a promising way to interfere with tumor cell proliferation and survival. However, controversy exists about the specificity of some glucose metabolism targeting anticancer drugs. Especially the potency of STF-31 has been debated. Here, we aimed to assess the impact of the glucose transporter (GLUT) inhibitors fasentin and WZB117, and the nicotinamide phosphoribosyltransferase (NAMPT) inhibitors GMX1778 and STF-31 on tumor cell proliferation and survival, as well as on glucose uptake. Methods Tumor-derived A172 (glioblastoma), BHY (oral squamous cell carcinoma), HeLa (cervix adenocarcinoma), HN (head neck cancer), HT-29 (colon carcinoma) and MG-63 (osteosarcoma) cells were treated with fasentin, WZB117, GMX1778 and STF-31. Proliferation rates and cell viabilities were assessed using XTT, crystal violet and LDH assays. mRNA and protein expression of GLUT1 and NAPRT were assessed using qPCR and Western blotting, respectively. The effects of inhibiting compounds on glucose uptake were measured using [F-18]-fluoro-deoxyglucose uptake experiments. Results Stimulation of tumor-derived cells with the different inhibitors tested revealed a complex pattern. whereby proliferation inhibiting and survival reducing concentrations varied in [F-18]-fluoro-deoxyglucose uptake experiments more than one order of magnitude among the different cells tested. We found that the effects of GMX1778 and STF-31 could be partially abolished by (i) nicotinic acid (NA) only in nicotinic acid phosphoribosyltransferase (NAPRT) expressing cells and (ii) nicotinamide mononucleotide (NMN) in all cells tested, supporting the classification of these compounds as NAMPT inhibitors. In short-time [F-18]-fluoro-deoxyglucose uptake experiments the application of WZB-117 was found to lead to an almost complete uptake inhibition in all cells tested, whereas the effect of fasentin was found to be cell type dependent with a maximum value of similar to 35% in A172, BHY, HeLa and HT-29 cells. We also found that STF-31 inhibited glucose uptake in all cells tested in a range of 25-50%. These data support the classification of STF-31 as a GLUT inhibitor. Conclusions Our data reveal a dual mode of action of STF-31, serving either as a NAMPT or as a GLUT inhibitor, whereby the latter seems to be apparent only at higher STF-31 concentrations. The molecular basis of such a dual function and its appearance in compounds previously designated as NAMPT-specific inhibitors requires further investigation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据