4.6 Article

Hierarchical TiO2 nanowire/microflower photoanode modified with Au nanoparticles for efficient photoelectrochemical water splitting

期刊

CATALYSIS SCIENCE & TECHNOLOGY
卷 8, 期 5, 页码 1395-1403

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cy02641b

关键词

-

资金

  1. National Natural Science Foundation of China [21473248, 21503271]
  2. '1000 Talent Program' (The Recruitment Program of Global Experts)
  3. Guangdong Provincial Science and Technology Project [2017A050506009]
  4. Support Scheme of Guangzhou for Leading Talents in Innovation and Entrepreneurship funding from Guangzhou [2016015]
  5. U.S. National Science Foundation [CBET-1150617]

向作者/读者索取更多资源

An efficient photoelectrochemical water splitting system is developed based on a hierarchical TiO2 nanowire/ microflower (H-TiO2) photoanode, which is synthesized via a one-step hydrothermal process. The H-TiO2 structure is formed via three primary self-assembly processes and simultaneously offers excellent ultraviolet light absorption capacity and large specific surface area. The H-TiO2 photoanode achieves a 1.3 fold enhancement in photocurrent density compared to its TiO(2)nanowire-based counterpart at 1.23 V vs. reversible hydrogen electrode (the theoretical potential for water electrolysis). More strikingly, by incorporating the surface plasmon resonance (SPR) effect from Au nanoparticles (NPs), the resulting Au/H-TiO2-based photoanodes (Au/H-TiO2) exhibit an about two-fold enhancement in photocurrent density under both simulated sunlight and visible-light illumination. Moreover, the maximum photoconversion efficiency of Au/H-TiO2 gives three fold enhancement compared to that in the absence of Au NPs. Significantly, Au NPs incorporated on the H-TiO2 surface also serve as co-catalysts like Pt under white-light illumination, reducing the onset potential by about 0.15 V and the current saturation potential by about 0.18 V. The enhanced photoactivity under white light is due to the co-action of electron transfer from the efficient carrier separation of H-TiO2 (ultraviolet part) and Au to H-TiO2 under the SPR effect (visible part). The present study provides a new strategy for designing and fabricating TiO2-based devices with favorable energy conversion efficiency for photoelectrochemical water splitting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据