4.6 Article

Real-time halo correction in phase contrast imaging

期刊

BIOMEDICAL OPTICS EXPRESS
卷 9, 期 2, 页码 623-635

出版社

OPTICAL SOC AMER
DOI: 10.1364/BOE.9.000623

关键词

-

资金

  1. National Science Foundation (NSF) [CBET-0939511 STC, DBI 14-50962 EAGER, IIP-1353368]
  2. Directorate For Engineering
  3. Div Of Industrial Innovation & Partnersh [1353368] Funding Source: National Science Foundation

向作者/读者索取更多资源

As a label-free, nondestructive method, phase contrast is by far the most popular microscopy technique for routine inspection of cell cultures. However, features of interest such as extensions near cell bodies are often obscured by a glow, which came to be known as the halo. Advances in modeling image formation have shown that this artifact is due to the limited spatial coherence of the illumination. Nevertheless, the same incoherent illumination is responsible for superior sensitivity to fine details in the phase contrast geometry. Thus, there exists a trade-off between high-detail (incoherent) and low-detail (coherent) imaging systems. In this work, we propose a method to break this dichotomy, by carefully mixing corrected low-frequency and high-frequency data in a way that eliminates the edge effect. Specifically, our technique is able to remove halo artifacts at video rates, requiring no manual interaction or a priori point spread function measurements. To validate our approach, we imaged standard spherical beads, sperm cells, tissue slices, and red blood cells. We demonstrate real-time operation with a time evolution study of adherent neuron cultures whose neurites are revealed by our halo correction. We show that with our novel technique, we can quantify cell growth in large populations, without the need for thresholds and system variant calibration. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据