4.6 Review

Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review

期刊

ARABIAN JOURNAL OF CHEMISTRY
卷 13, 期 1, 页码 2287-2308

出版社

ELSEVIER
DOI: 10.1016/j.arabjc.2018.04.013

关键词

Green biosynthesis; Superparamagnetic; Magnetite nanoparticle; Anticancer; Targeted drug delivery

向作者/读者索取更多资源

This review discussed about the green biosynthesis of magnetite nanoparticles (Fe3O4-NPs) and the biomedical applications, which mainly focus on the targeted anticancer drug delivery. Fe3O4-NPs have been studied and proved that Fe3O4-NPs can be used in various fields of application, due to superparamagnetic property that Fe3O4-NPs possessed. In targeted drug delivery system, drug loaded Fe3O4-NPs can accumulate at the tumor site by the aid of external magnetic field. This can increase the effectiveness of drug release to the tumor site and vanquish cancer cells without harming healthy cells. In order to apply Fe3O4-NPs in human body, Fe3O4-NPs have to be biocompatible and biodegradable to minimize the toxicity. So, green biosynthesis plays a crucial role as the biosynthesized Fe3O4-NPs is safe to be consumed by human because the materials used are from biological routes, such as plant extract and natural polymer. However, biosynthesis using plant extract is the most popular among them all as plant extract can act as both reducing and stabilizing agents in the synthesizing process of nanoparticles. This approach is not merely simple, yet economic and less waste production, which is environmental friendly. Several biomedical applications of Fe3O4-NPs are included in this review, but anticancer drug delivery study is discussed in detail. The criteria for Fe3O4-NPs to be used as drug delivery vehicle are discussed so as to study the optimum condition of Fe3O4-NPs in drug delivery application. Many researches showed the promising results of Fe3O4-NPs in treating cancer cells via in vitro study. Hence, this review is significant which summarize the vital points of Fe3O4-NPs in targeted anticancer drug delivery system. Conclusions have been made according to the literature reviewed and some points of view were proposed for future study. (C) 2018 Production and hosting by Elsevier B.V. on behalf of King Saud University.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据