4.8 Article

Carbon-Tailored Semimetal MoP as an Efficient Hydrogen Evolution Electrocatalyst in Both Alkaline and Acid Media

期刊

ADVANCED ENERGY MATERIALS
卷 8, 期 24, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201801258

关键词

electrocatalysts; hydrogen evolution reaction; MoP; topological semimetals

资金

  1. European Research Council (ERC Advanced Grant) [291472]
  2. ERC Advanced Grant [742068]
  3. ERC Grant on 2DMATER, EC under Graphene Flagship [CNECT-ICT-604391]
  4. cfaed (Center for Advancing Electronics Dresden)

向作者/读者索取更多资源

The electrolysis processes such as hydrogen evolution reaction (HER) require high efficient catalysts with robust surface stability. A high conductivity is also necessary to speed up the charge transport between the catalyst and the electrolyte. Recently, the observation of exceedingly high conductivity in the topological semimetal MoP, has provided a model catalyst to investigate the correlation between the electrical transport and the electrocatalytic activity for the HER. Thus, MoP is encapsulated in a Mo, P codoped carbon layer (MoP@C). This composite material exhibits outstanding HER performance, with an extremely low overpotential of 49 mV at a current density of 10 mA cm(-2) and a Tafel slope of 54 mV dec(-1) in an alkaline medium. In addition, electron transport analysis indicates that MoP exhibits high conductivity and mobility due to the existence of triple-point fermions and a complex Fermi surface. Furthermore, the presence of P-C and Mo-C bonds at the interface between the carbon layer and the MoP particles modulates the band structure of MoP@C and facilitates fast electron transfer, accumulation, and subsequent delocalization, which are in turn responsible for the excellent HER activity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据