4.8 Article

How Solvent Affects C-H Activation and Hydrogen Production Pathways in Homogeneous Ru-Catalyzed Methanol Dehydrogenation Reactions

期刊

ACS CATALYSIS
卷 8, 期 8, 页码 6908-6913

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.8b01177

关键词

explicit solvent; methanol dehydrogenation; C-H activation; H-2 formation; molecular dynamics; density functional theory

资金

  1. The Netherlands Organization for Scientific Research (NWO) [13CSER003, 14CSER044]
  2. Shell Global International Solutions B.V.
  3. Research Priority Area Sustainable chemistry of the University of Amsterdam
  4. SURF cooperative

向作者/读者索取更多资源

Insights into the mechanism of the catalytic cycle for methanol dehydrogenation catalyzed by a highly active PNP pincer ruthenium complex in methanol solvent are presented, using DFT-based molecular dynamics with an explicit description of the solvent, as well as static DFT calculations using microsolvation models. In contrast to previous results, we find the amido moiety of the catalyst to be permanently protonated under catalytic conditions. Solvent molecules actively participate in crucial reaction steps and significantly affect the reaction barriers when compared to pure gas-phase models, which is a direct result of the enhanced solvent stabilization of methoxide anion intermediates. Further, the calculations reveal that this system does not operate via the commonly assumed Noyori-type outer-sphere metal-ligand cooperative pathway. Our results show the importance of incorporating a molecular description of the solvent to gain a deeper and accurate understanding of the reaction pathways, and stress on the need to involve explicit solvent molecules to model complex catalytic processes in a realistic manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据