4.8 Article

Prokaryotic nanocompartments form synthetic organelles in a eukaryote

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-03768-x

关键词

-

资金

  1. Wellcome Trust [107402/Z/15/Z]
  2. Leopoldina Research Fellowship from the German National Academy of Sciences [LPDS 2014-05]
  3. National Science Foundation (NSF) Synthetic Biology of Yeast grant [MCB-1330914]
  4. Wyss Institute for Biologically Inspired Engineering at Harvard
  5. Wellcome Trust [107402/Z/15/Z] Funding Source: Wellcome Trust
  6. Direct For Biological Sciences [1330914] Funding Source: National Science Foundation
  7. Div Of Molecular and Cellular Bioscience [1330914] Funding Source: National Science Foundation

向作者/读者索取更多资源

Compartmentalization of proteins into organelles is a promising strategy for enhancing the productivity of engineered eukaryotic organisms. However, approaches that co-opt endogenous organelles may be limited by the potential for unwanted crosstalk and disruption of native metabolic functions. Here, we present the construction of synthetic non-endogenous organelles in the eukaryotic yeast Saccharomyces cerevisiae, based on the prokaryotic family of self-assembling proteins known as encapsulins. We establish that encapsulins self-assemble to form nanoscale compartments in yeast, and that heterologous proteins can be selectively targeted for compartmentalization. Housing destabilized proteins within encapsulin compartments afford protection against proteolytic degradation in vivo, while the interaction between split protein components is enhanced upon co-localization within the compartment interior. Furthermore, encapsulin compartments can support enzymatic catalysis, with substrate turnover observed for an encapsulated yeast enzyme. Encapsulin compartments therefore represent a modular platform, orthogonal to existing organelles, for programming synthetic compartmentalization in eukaryotes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据