4.8 Article

Electron affinity of liquid water

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-017-02673-z

关键词

-

资金

  1. MICCoM as part of the Computational Materials Sciences Program - U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division [5J-30161-0010A]
  2. Natural Sciences and Engineering Research Council of Canada
  3. Lawrence Fellowship
  4. National Science Foundation [CHE-1453204, ACI-1053575]
  5. U.S. DOE at Lawrence Livermore National Laboratory [DE-AC52-07A27344]
  6. DOE Office of Science User Facility [DEAC02-06CH11357]
  7. Direct For Mathematical & Physical Scien
  8. Division Of Chemistry [1453204] Funding Source: National Science Foundation

向作者/读者索取更多资源

Understanding redox and photochemical reactions in aqueous environments requires a precise knowledge of the ionization potential and electron affinity of liquid water. The former has been measured, but not the latter. We predict the electron affinity of liquid water and of its surface from first principles, coupling path-integral molecular dynamics with ab initio potentials, and many-body perturbation theory. Our results for the surface (0.8 eV) agree well with recent pump-probe spectroscopy measurements on amorphous ice. Those for the bulk (0.1-0.3 eV) differ from several estimates adopted in the literature, which we critically revisit. We show that the ionization potential of the bulk and surface are almost identical; instead their electron affinities differ substantially, with the conduction band edge of the surface much deeper in energy than that of the bulk. We also discuss the significant impact of nuclear quantum effects on the fundamental gap and band edges of the liquid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据