4.8 Article

Predicting phase behavior of grain boundaries with evolutionary search and machine learning

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-02937-2

关键词

-

资金

  1. U.S. Department of Energy by Lawrence Livermore National Laboratory [DE-AC52-07NA27344]
  2. Laboratory Directed Research and Development Program at LLNL [17-LW-012]
  3. LLNL LDRD program
  4. National Nuclear Security Administration through DOE [DE-NA0001982]

向作者/读者索取更多资源

The study of grain boundary phase transitions is an emerging field until recently dominated by experiments. The major bottleneck in the exploration of this phenomenon with atomistic modeling has been the lack of a robust computational tool that can predict interface structure. Here we develop a computational tool based on evolutionary algorithms that performs efficient grand-canonical grain boundary structure search and we design a clustering analysis that automatically identifies different grain boundary phases. Its application to a model system of symmetric tilt boundaries in Cu uncovers an unexpected rich polymorphism in the grain boundary structures. We find new ground and metastable states by exploring structures with different atomic densities. Our results demonstrate that the grain boundaries within the entire misorientation range have multiple phases and exhibit structural transitions, suggesting that phase behavior of interfaces is likely a general phenomenon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据