4.8 Article

A multistage rotational speed changing molecular rotor regulated by pH and metal cations

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-04323-4

关键词

-

资金

  1. National Natural Science Foundation of China [21332008, 21572023, 21672026]
  2. 973 Program [2015CB856502]

向作者/读者索取更多资源

Despite having significant applications in building nanomachines, molecular rotors with the rotational speed modulations to multiple stages in a wide range of frequency have not yet been well established. Here, we report the discovery of a stimuli-responsive molecular rotor, the rotational speed of which in the slow-to-fast range could be modulated to at least four stages triggered by acid/base and metal cations. The rotor itself rotates rapidly at ambient or elevated temperature but displays a restricted rotation after deprotonation due to the produced intramolecular electrostatic repulsion. Subsequent addition of Li+ or Na+ cations introduces an electrostatic bridge to stabilize the transition state of the deprotonated rotor, thus giving a cation-radius-dependent acceleration of the rotation to render the rotor running at a mid-speed. All the stimuli are highly reversible. Our studies provide a conceptual approach for constructing multistage rotational-speed-changing molecular rotors, and further, the practical nanomachines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据