4.8 Article

Highly stretchable carbon aerogels

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-03268-y

关键词

-

资金

  1. National Natural Science Foundation of China [21325417, 51533008, 51703194, 51603183]
  2. National Key R&D Program of China [2016YFA0200200]
  3. Hundred Talents Program of Zhejiang University [188020*194231701/113]
  4. National Postdoctoral Program for Innovative Talents [BX201700209]
  5. China Postdoctoral Science Foundation [2017M620241]
  6. Fundamental Research Funds for the Central Universities [2017QNA4036]

向作者/读者索取更多资源

Carbon aerogels demonstrate wide applications for their ultralow density, rich porosity, and multifunctionalities. Their compressive elasticity has been achieved by different carbons. However, reversibly high stretchability of neat carbon aerogels is still a great challenge owing to their extremely dilute brittle interconnections and poorly ductile cells. Here we report highly stretchable neat carbon aerogels with a retractable 200% elongation through hierarchical synergistic assembly. The hierarchical buckled structures and synergistic reinforcement between graphene and carbon nanotubes enable a temperature-invariable, recoverable stretching elasticity with small energy dissipation (similar to 0.1, 100% strain) and high fatigue resistance more than 106 cycles. The ultralight carbon aerogels with both stretchability and compressibility were designed as strain sensors for logic identification of sophisticated shape conversions. Our methodology paves the way to highly stretchable carbon and neat inorganic materials with extensive applications in aerospace, smart robots, and wearable devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据