4.8 Article

High energy flexible supercapacitors formed via bottom-up infilling of gel electrolytes into thick porous electrodes

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-04937-8

关键词

-

资金

  1. National Science Foundation Engineering Research Center for Power Optimization of Electro Thermal Systems (POETS) [EEC-1449548]
  2. Major Research Plan of NSFC on Nanomanufacturing [91323303]
  3. NSFC Funds [51522508, 51505372]
  4. China Postdoctoral Science Foundation through the State Key Laboratory for Manufacturing Systems Engineering at Xi'an Jiaotong University [2016T90905, 2015M570824]

向作者/读者索取更多资源

Formation of thick, high energy density, flexible solid supercapacitors is challenging because of difficulties infilling gel electrolytes into porous electrodes. Incomplete infilling results in a low capacitance and poor mechanical properties. Here we report a bottom-up infilling method to overcome these challenges. Electrodes up to 500 mu m thick, formed from multi-walled carbon nanotubes and a composite of poly(3,4-ethylenedioxythiophene), polystyrene sulfonate and multi-walled carbon nanotubes are successfully infilled with a polyvinyl alcohol/ phosphoric acid gel electrolyte. The exceptional mechanical properties of the multi-walled carbon nanotube-based electrode enable it to be rolled into a radius of curvature as small as 0.5 mm without cracking and retain 95% of its initial capacitance after 5000 bending cycles. The areal capacitance of our 500 mu m thick poly(3,4-ethylenedioxythiophene), polystyrene sulfonate, multi-walled carbon nanotube-based flexible solid supercapacitor is 2662 mF cm(-2) at 2mV s(-1), at least five times greater than current flexible supercapacitors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据