4.8 Article

Stabilizing spin spirals and isolated skyrmions at low magnetic field exploiting vanishing magnetic anisotropy

期刊

NATURE COMMUNICATIONS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-018-03240-w

关键词

-

资金

  1. European Commission [ATOMS FP7/2007-2013-62260]
  2. Deutsche Forschungsgemeinschaft [Wu349/15-1]
  3. CAPES
  4. CNPq
  5. FAPEMIG
  6. Alexander von Humboldt Foundation
  7. Deutsche Forschungsemeinschaft [DU1489/2-1]
  8. Graduate School Materials Mainz
  9. ERC Synergy Grant SC2 [610115]
  10. Transregional Collaborative Research Center (SFB/TRR) [173 SPIN+X]
  11. Grant Agency of the Czech Republic [14-37427G]
  12. Deutsche Forschungsgemeinschaft
  13. Karlsruhe Institute of Technology
  14. Gutenberg University of Mainz

向作者/读者索取更多资源

Skyrmions are topologically protected non-collinear magnetic structures. Their stability is ideally suited to carry information in, e.g., racetrack memories. The success of such a memory critically depends on the ability to stabilize and manipulate skyrmions at low magnetic fields. The non-collinear Dzyaloshinskii-Moriya interaction originating from spin-orbit coupling drives skyrmion formation. It competes with Heisenberg exchange and magnetic anisotropy favoring collinear states. Isolated skyrmions in ultra-thin films so far required magnetic fields as high as several Tesla. Here, we show that isolated skyrmions in a monolayer of Co/Ru(0001) can be stabilized down to vanishing fields. Even with the weak spin-orbit coupling of the 4d element Ru, homochiral spin spirals and isolated skyrmions were detected with spin-sensitive scanning tunneling microscopy. Density functional theory calculations explain the stability of the chiral magnetic features by the absence of magnetic anisotropy energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据