4.5 Article

Development of a New Graphical Technique for Dissolved Gas Analysis in Power Transformers Based on the Five Combustible Gases

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TDEI.2015.004999

关键词

Power transformers; fault diagnosis; dissolved gas analysis; graphical techniques; Duval triangle

向作者/读者索取更多资源

Several methods have been proposed for dissolved gas analysis (DGA) of mineral oil in power transformers. One of the simple and most widely used methods is Duval triangle. However, Duval triangle does not consider the concentrations of two combustible gases, namely ethane (C2H6) and hydrogen (H-2). As a result, Duval triangle exhibits a lower accuracy in diagnosing certain fault types, for which these gases are the key gases, such as low overheating and corona discharge. Accordingly, this paper proposes a novel graphical technique for DGA based on all the five combustible gases. The proposed graphical technique is developed in the form of a pentagon shape. The pentagon heads represents the percentage concentration of each individual gas to the total combustible gases. The corresponding point for a certain faulty case is determined by the center of mass of all pentagon heads. The knowledge extracted from previous DGA methods and field experiences are used to estimate the preliminary fault regions within the pentagon. The exact boundaries between fault regions are then specified using actual DGA data with corresponding fault types collected from the Egyptian Electricity Network and published cases. The overall performance of the proposed pentagon has been evaluated using a set of fault cases and it is revealed that the proposed pentagon has higher diagnostic accuracy compared to other methods including Duval triangles and IEC standard 60599.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据