4.4 Article

Inhibition of microRNA-155 modulates endotoxin tolerance by upregulating suppressor of cytokine signaling 1 in microglia

期刊

EXPERIMENTAL AND THERAPEUTIC MEDICINE
卷 15, 期 6, 页码 4709-4716

出版社

SPANDIDOS PUBL LTD
DOI: 10.3892/etm.2018.6032

关键词

endotoxin tolerance; suppressor of cytokine signaling 1; microRNA-155; BV2; microglia

资金

  1. National Natural Science Foundation of China [81201252]
  2. Scientific Research Programme of Nantong [MS12016007]

向作者/读者索取更多资源

Endotoxin tolerance is an immunohomeostatic reaction to reiterant lipopolysaccharide (LPS) exposure that maintains a state of altered responsiveness in immune cells, resulting in the inhibition of the pro-inflammatory response and the resolution of inflammation. Microglia constitutes the first line of defense against endogenous and external challenges in the brain. MicroRNAs (miRs) serve a critical function in the regulation of inflammation. The aim of the present study was to investigate whether miR-155 regulates endotoxin tolerance. miR-155 and suppressor of cytokine signaling-1 (SOCS1) mRNA expression was measured using RT-qPCR. The expression of SOCS1 was measured by western blotting and immunofluorescence. TNF-alpha levels were detected by an enzyme-linked immunosorbent assay. The results indicated that miR-155 expression was significantly downregulated in the microglia and cortex tissue following the induction of endotoxin tolerance. This was consistent with an increase in the expression of SOCS1, a predicted target of miR-155 and key inhibitor of the inflammatory reaction. Transfection with miR-155 inhibitor significantly enhanced SOCS1 expression in the microglia following the induction of endotoxin tolerance. SOCS1 knockdown using short hairpin RNA partly inhibited the anti-inflammatory process and promoted the inflammatory response during endotoxin tolerance. The results of the current study indicate that miR-155 inhibition contributes to the development of endotoxin tolerance. Understanding how miRs regulate inflammatory mechanisms may facilitate the development of novel therapeutic strategies to treat CNS disorders.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据