3.8 Proceedings Paper

Ab initio study of the properties of GaN(0001) surface at MOVPE and HVPE growth conditions

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/pssc.201100498

关键词

DFT; gallium nitride; GaN surface; hydrogen adsorption

向作者/读者索取更多资源

Density functional theory (DFT) is used to simulate the properties of GaN(0001) surface employing a finite slab with additional modifications of the non-real side by termination with variously charged pseudo-hydrogen atoms. Different terminations change the electric field inside the slab and causes a relative shift of the energy of the surface and band states, which is known as Surface States Stark Effect (SSSE). It is shown that single hydrogen atom is barrierlessly adsorbed on GaN(0001) surface in the on-top position. Its adsorption energy strongly depends on the surface coverage by other hydrogen atoms, being above 3 eV and below 1.5 eV for the coverage lower and higher than 0.75 ML, respectively. This large difference is due to the difference of electronic occupation of the surface states. The adsorption energies indicate that hydrogen can be stably attached to the surface up to 0.75 ML coverage. It is shown that the adsorption energy of molecular hydrogen depends to some degree on the electric field at the surface, i.e. doping in the bulk. The dependence of hydrogen coverage on the pressure in the vapor shows that complete removal of hydrogen from GaN(0001) surface is difficult. Also chemical potential of hydrogen at the surface as a function of its coverage is determined. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据