4.8 Article

β-NiS modified CdS nanowires for photocatalytic H2 evolution with exceptionally high efficiency

期刊

CHEMICAL SCIENCE
卷 9, 期 6, 页码 1574-1585

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7sc03928j

关键词

-

资金

  1. National Natural Science Foundation of China [11674035, 11274052, 61274015]
  2. Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications)

向作者/读者索取更多资源

Co-catalysis is regarded as a promising strategy to improve the hydrogen evolution performance of semiconductor-based photocatalysts. But developing a simple and effective technique to achieve the optimal synergy between co-catalysts and host photocatalysts has been a great challenge. Herein, hybrid photocatalysts consisting of beta-NiS modified CdS nanowires (NiS/CdS NWs) have been synthesized via a simple and green hydrothermal route using CdS NWs as the template from thiourea and nickel acetate in the presence of sodium hypophosphite. As a result, a metal Ni intermediate was formed via an electroless plating process assisted by H2PO2-, which facilitated the growth of highly conducting flake like beta-NiS nanostructures onto the surface of the CdS NWs. With the optimal loading amount of NiS, the obtained NiS/CdS NWs present a record-high photocatalytic activity for H-2 evolution in lactic acid aqueous solutions under visible light irradiation. At 25 degrees C, the rate of H-2 evolution was measured as 793.6 mu mol h(-1) (over a 5 mg photocatalyst sample), which is nearly 250-fold higher than that over pure CdS NWs, and the apparent quantum yield reached an exceptionally high value of 74.1% at 420 nm. The mechanism for the photocatalytic H-2 evolution over the present NiS/CdS NWs was also proposed. This strategy would provide new insight into the design and development of high-performance heterostructured photocatalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据