4.5 Article

Bioenergetic Effects of Mitochondrial-Targeted Coenzyme Q Analogs in Endothelial Cells

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.112.195586

关键词

-

资金

  1. Veterans Affairs Medical Research Funds
  2. National Institutes of Health National Heart, Lung, and Blood Institute [5R01HL073166]
  3. Iowa Affiliate Fraternal Order of the Eagles
  4. American Chemical Society Division of Medicinal Chemistry
  5. Bristol-Myers Squibb
  6. National Institutes of Health National Institute of General Medical Sciences Training Grant in Pharmacological Sciences [T32GM067795]

向作者/读者索取更多资源

Mitochondrial-targeted analogs of coenzyme Q (CoQ) are under development to reduce oxidative damage induced by a variety of disease states. However, there is a need to understand the bioenergetic effects of these agents and whether or not these effects are related to redox properties, including their known pro-oxidant effects. We examined the bioenergetic effects of two mitochondrial-targeted CoQ analogs in their quinol forms, mitoquinol (MitoQ) and plastoquinonyl-decyl-triphenyl-phosphonium (SkQ1), in bovine aortic endothelial cells. We used an extracellular oxygen and proton flux analyzer to assess mitochondrial action at the intact-cell level. Both agents, in dose-dependent fashion, reduced the oxygen consumption rate (OCR) directed at ATP turnover (OCRATP) (IC50 values of 189 +/- 13 nM for MitoQ and 181 +/- 7 for SKQ1; difference not significant) while not affecting or mildly increasing basal oxygen consumption. Both compounds increased extracellular acidification in the basal state consistent with enhanced glycolysis. Both compounds enhanced mitochondrial superoxide production assessed by using mitochondrial-targeted dihydroethidium, and both increased H2O2 production from mitochondria of cells treated before isolation of the organelles. The manganese superoxide dismutase mimetic manganese(III) tetrakis(1-methyl-4-pyridyl) porphyrin did not alter or actually enhanced the actions of the targeted CoQ analogs to reduce OCRATP. In contrast, N-acetylcysteine mitigated this effect of MitoQ and SkQ1. In summary, our data demonstrate the important bioenergetic effects of targeted CoQ analogs. Moreover, these effects are mediated, at least in part, through superoxide production but depend on conversion to H2O2. These bioenergetic and redox actions need to be considered as these compounds are developed for therapeutic purposes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据