3.8 Article

Resistively heated temperature programmable silicon micromachined gas chromatography with differential mobility spectrometry

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s12127-012-0105-1

关键词

Differential mobility detection; Resistively heated temperature programming; Silicon micromachining gas chromatography; Fast gas chromatography

资金

  1. Australian Research Council Australian Research Fellowship [DP110104923]

向作者/读者索取更多资源

A microfabricated electromechanical system based on radio frequency modulated ion mobility spectrometry (MEMS-RFIMS), also known as differential ion mobility spectrometry (DMS) has been successfully interfaced to a custom-fabricated resistively heated temperature programmable micromachined gas chromatograph. In contrast to a conventional time-of-flight ion mobility spectrometer, the DMS uses the non-linear mobility dependence in strong radio frequency electric fields for ion filtering. Selective and sensitive detection of targeted analytes of interest can be achieved by using different transport gases, radio frequencies, and associated compensation voltages. In addition, the detection of both positive and negative ions, depending on the ionization mechanism favorable to the analytes involved is achieved. When compared to a standalone GC with a non spectrometric detector or a stand-alone DMS, GC-DMS as a hyphenated technique offers two competitive advantages; two orthogonal separating methods in a single analytical system and the resolving power of gas chromatography to minimize charge exchange in the ionization chamber of the detector. In this article, a portable, resistively heated temperature programmable silicon machined gas chromatograph with differential mobility detection is introduced. The performance of the instrument is illustrated with examples of difficult industrial applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据