4.5 Article

A Case of Lightweight PUF Constructions: Cryptanalysis and Machine Learning Attacks

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TCAD.2015.2448677

关键词

Composite physically unclonable functions (PUF); cryptanalysis; lightweight secure PUF (LSPUF); modeling attack (MA)

向作者/读者索取更多资源

Due to their unique physical properties, physically unclonable functions (PUF) have been proposed widely as versatile cryptographic primitives. It is desirable that silicon PUF circuits should be lightweight, i.e., have low-hardware resource requirements. However, it is also of primary importance that such demands of low hardware overhead should not compromise the security aspects of PUF circuits. In this paper, we develop two different mathematical attacks on previously proposed lightweight PUF circuits, namely composite PUF and the multibit output lightweight secure PUF (LSPUF). We show that independence of various components of composite PUF can be used to develop divide and conquer attacks which can be used to determine the responses to unknown challenges. We reduce the complexity of the attack using a machine learning-based modeling analysis. In addition, we elucidate a special property of the output network of LSPUF to show how such feature can be leveraged by an adversary to perform an intelligent model building attack. The theoretical inferences are validated through experimental results. More specifically, proposed attacks on composite PUF are validated using the challenge-response pairs (CRPs) from its field programmable gate array (FPGA) implementation, and attack on LSPUF is validated using the CRPs of both simulated and FPGA implemented LSPUF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据