4.2 Article

Protease-mediated Inflammation: An In Vitro Human Keratinocyte-based Screening Tool for Anti-inflammatory Drug Nanocarrier Systems

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1515/zpch-2017-1048

关键词

core-multishell nanocarrier (CMS-NC); dexamethasone (DXM); electron paramagnetic resonance spectroscopy (EPR); in vitro screening; serine protease (SP); skin inflammation

资金

  1. Deutsche Forschungsgemeinschaft (DFG)/German Research Foundation [SFB 1112]

向作者/读者索取更多资源

Background: Refined encapsulation approaches in dermatotherapy gain increased interest. There is need of reproducible in vitro systems representing disease features to screen drug delivery systems for preclinical assessment. Inflammatory human skin diseases are commonly accompanied by abnormal epidermal differentiation and barrier impairment. Serine proteases (SPs) and their inhibitors play a critical role in such dysfunctional differentiation. SPs also initiate cellular pathways via activation of protease-activated receptors, which contribute to inflammation. Thus, function and activity of SPs should be considered for the design of new therapies of such disorders. Objectives: Herein, we established a novel simplified cell culture model, based on SP-mediated inflammation suitable to assess nanocarriers loaded with antiinflammatory drugs. Methods: SP-mediated inflammation and the regulatory effect of free or encapsulated dexamethasone were determined by measuring interleukin-6 and interleukin-8 in culture medium of HaCaT (human adult low calcium temperature)-keratinocytes. Additionally, radical formation was analyzed by electron paramagnetic resonance spectroscopy. Cellular uptake of core-multishell nanocarriers was investigated by fluorescence microscopy. Cytotoxicity of all additives was determined by a viability assay. Results: SP-Stimulation of keratinocytes resulted in increased radical production and release of inflammatory cytokines without affecting cell viability. Induced inflammation was successfully downregulated by addition of free or encapsulated dexamethasone. Conclusion: SP-addition can be used as inflammatory stimulus in cell culture to mimic effects of aberrant enzymatic activities found in skin of atopic dermatitis patients. The set-up is appropriate as a preliminary test to examine the effectiveness of new molecules or delivery-systems to counteract serine protease-mediated inflammatory processes prior to skin studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据