4.3 Article

Using Turbidity Measurements to Estimate Total Phosphorus and Sediment Flux in a Great Lakes Coastal Wetland

期刊

WETLANDS
卷 38, 期 5, 页码 1059-1065

出版社

SPRINGER
DOI: 10.1007/s13157-018-1044-3

关键词

Wetland reconnection; Phosphorus retention; Sediment retention; Great Lakes restoration

资金

  1. U.S. Geological Survey
  2. Great Lakes Restoration Initiative

向作者/读者索取更多资源

Coastal wetlands around the Laurentian Great Lakes in North America have the potential to intercept surface water coming off of the landscape and reduce the amount of nutrients and sediment entering the lakes. However, extensive coastal wetland areas have been isolated behind dikes and thus have limited interaction with nutrient-rich waters that contribute to harmful algal blooms and other water-quality issues. In this study, we developed a method to use high-frequency measurements of discharge and turbidity to estimate sediment and total phosphorus retention in a hydrologically reconnected coastal wetland. We found sediment and total phosphorus retention to be episodic and highly related to fluctuations in water level. Low water levels in Lake Erie in late 2012 resulted in low retention in the wetland, but sediment and total phosphorus retention increased as water levels rose in the first half of 2013. Overall, the reconnected wetland was a sink for both total phosphorus and suspended sediment and locally reduced phosphorus loading rates to Lake Erie. Additional wetland reconnection projects have the potential to further reduce phosphorus and sediment loading rates, which could improve local water quality and ecosystem health.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据