4.8 Article

Salinity-gradient energy driven microbial electrosynthesis of value-added chemicals from CO2 reduction

期刊

WATER RESEARCH
卷 142, 期 -, 页码 396-404

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2018.06.013

关键词

Microbial electrosynthesis; CO2 reduction; Microbial reverse-electrodialysis; electrolysis cell (MREC); Salinity gradient; Wastewater; Acetate

资金

  1. China Scholarship Council (CSC)
  2. Danish Council for Independent Research [DFF-1335-00142]
  3. Novo Nordisk Foundation [NNF16OC0021568]

向作者/读者索取更多资源

Biological conversion of CO2 to value-added chemicals and biofuels has emerged as an attractive strategy to address the energy and environmental concerns caused by the over-reliance on fossil fuels. In this study, an innovative microbial reverse-electrodialysis electrolysis cell (MREC), which combines the strengths of reverse electrodialysis (RED) and microbial electrosynthesis technology platforms, was developed to achieve efficient CO2-to-value chemicals bioconversion by using the salinity gradient energy as driven energy sources. In the MREC, maximum acetate and ethanol concentrations of 477.5 +/- 33.2 and 46.2 +/- 8.2 mg L-1 were obtained at the cathode, catalyzed by Sporomusa ovata with production rates of 165.79 +/- 11.52 and 25.11 +/- 4.46 mmol m(-2) d(-1), respectively. Electron balance analysis indicates that 94.4 +/- 3.9% of the electrons derived from wastewater and salinity gradient were recovered in acetate and ethanol. This work for the first time proved the potential of innovative MREC configuration has the potential as an efficient technology platform for simultaneous CO2 capture and electrosynthesis of valuable chemicals. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据