4.8 Article

Effective phosphate removal for advanced water treatment using low energy, migration electric-field assisted electrocoagulation

期刊

WATER RESEARCH
卷 138, 期 -, 页码 129-136

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2018.03.037

关键词

Energy efficiency; Wastewater treatment; Electrocoagulation; Air-cathode; Iron electrode; Aluminum electrode

资金

  1. Strategic Environmental Research and Development Program (SERDP) [2013DX01]
  2. State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology)
  3. China Scholarship Council (CSC)

向作者/读者索取更多资源

A migration electric-field assisted electrocoagulation (MEAEC) system was developed to increase phosphate removal from domestic wastewater, with reduced energy consumption, using a titanium charging (inert) electrode and a sacrificial iron anode. In the MEAEC, an electric field was applied between the inert electrode (titanium) and an air cathode to drive migration of phosphate anions towards the sacrificial anode. Current was then applied between the sacrificial anode (Fe or Al mesh) and the air cathode to drive electrocoagulation of phosphate. A MEAEC with the Fe electrode using primary clarifier effluent achieved 98% phosphate removal, producing water with a total phosphorus of 0.3 mg/L with <6 min total treatment time (five cycles; each 10 s inert electrode charging, and 1 min electrocoagulation), at a constant current density of 1 mA/cm(2). In the absence of the 10 s charging time, electrocoagulation required 15 min for the same removal. With an aluminum anode and the same phosphorus removal, the MEAEC required 7 cycles (7 min total treatment, 1 min 10 s total charging), while conventional electrocoagulation required 20 min. The energy demand of Fe-MEAEC was only 0.039 kWh/m(3) for 98% phosphate removal, which was 35% less than with the Al-MEAEC of 0.06 kWh/m(3), and 28% less than that previously obtained using an inert graphite electrode. Analysis of the precipitate showed that a less porous precipitate was obtained with the Al anode than with the Fe anode. The phosphorus in precipitate of Fe-MEAEC was identified as PO43- and HPO42-, while the Fe was present as both Fe2+ and Fe3+. Only HPO42- and Al3+ were identified in the precipitate of the Al-MEAEC. These results indicated that the MEAEC with a titanium inert charging electrode and iron anode could achieve the most efficient phosphate removal with very low energy demands, compared to previous electrochemical approaches. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据