4.7 Article

Impact damage visualization in a honeycomb composite panel through laser inspection using zero-lag cross-correlation imaging condition

期刊

ULTRASONICS
卷 87, 期 -, 页码 152-165

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultras.2018.02.014

关键词

Non-destructive inspection; Honeycomb composite panel; Barely visible impact damage; Damage visualization; Zero-lag cross correlation imaging condition; Laser ultrasonics

资金

  1. NIA
  2. National Natural Science Foundation of China [11520101001]

向作者/读者索取更多资源

A fully non-contact laser-based nondestructive inspection (NDI) system is developed to detect and visualize damage in structures. The study focuses on the size quantification and characterization of a barely visible impact damage (BVID) in a honeycomb composite panel. The hardware consists of a Q-switched Nd:YAG pulse laser that probes the panel by generating broadband guided waves via thermo-elastic expansion. The laser, in combination with a set of galvano-mirrors is used to raster scan over a twodimensional surface covering the damaged region of an impacted quasi-isotropic [60/0/-60](s) honeycomb composite panel. The out-of-plane velocities are measured at a fixed location normal to the surface by a laser Doppler vibrometer (LDV). An ultrasonic full wavefield assembled from the three-dimensional space-time data matrix in the interrogated area is first acquired and then processed for imaging the impacted damage area. A wavenumber filtering technique in terms of wave vectors is applied to distinguish the forward and backward wavefields in the wavenumber-frequency domain. A zero-lag cross correlation (ZLCC) imaging condition is then employed in the space-frequency domain for damage imaging. The ZLCC imaging condition consists of cross correlating the incident and reflected wavefields in the entire scanned region. The condition not only images the damage boundary between incident and reflected waves outside the damage region but also, for longer time windows, enables to capture the momentary standing waves formed within the damaged region. The ZLCC imaging condition imaged two delaminated region: a main delamination, which was a skewed elliptic with major and minor axis lengths roughly 17 mm and 10 mm respectively, and a secondary delamination region approximately 6 mm by 4 mm, however, which can only be shown at higher frequency range around 80-95 kHz. To conclude, the ZLCC results were in very good agreement with ultrasonic C-scan and X-ray computed tomographic (X-ray CT) scan results. Since the imaging condition is performed in the space-frequency domain, the imaging from ZLCC can also reveal resonance modes which are shown in the main delaminated area by windowing a narrow frequency band sequentially. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据