4.7 Article

Influence of surface roughness on the measurement of acoustic nonlinearity parameter of solids using contact piezoelectric transducers

期刊

ULTRASONICS
卷 84, 期 -, 页码 112-118

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ultras.2017.10.022

关键词

Acoustic nonlinearity parameter; Surface roughness; Transducer calibration

资金

  1. Industry/University Cooperative Research Program of the Center for Nondestructive Evaluation at Iowa State University, United States

向作者/读者索取更多资源

The current article reports on the experimental study of the influence of surface roughness on the measurement of the acoustic nonlinearity parameter. The nonlinearity parameter was measured using contact piezoelectric transducers, which were calibrated using the reciprocity based technique. Aluminum and steel samples were chosen to study the influence of hardness of the sample on the measurement of the nonlinearity parameter. While, lower Ra value (average asperity height) aluminum samples were more susceptible to surface deformation and scratches from coupling the transducer to the sample, the same could not be observed for steel samples. Results demonstrate a large variation in nonlinearity parameter for aluminum (similar to 35%) compared to steel (similar to 2%) between two consecutive experiments, suggesting flattening of asperities after the first experiment. Experiments were also performed with 3 different setup configurations; (1) receiver and transmitter on rough sides, (2) receiver on smooth and transmitter on rough side and (3) receiver on rough and transmitter on smooth side. Results show that least variation in the measured nonlinearity parameter was observed when the receiver was placed on the smooth side, and a 10% variation was observed between the three setup configurations. Finally, a comparison of relative nonlinearity parameter calculated using current or voltage ratio and absolute nonlinearity parameter showed large discrepancies. Conclusions were drawn from the experimental observations. (C) 2017 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据