4.5 Article

Kidney-specific WNK1 inhibits sodium reabsorption in the cortical thick ascending limb

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
卷 303, 期 5, 页码 F667-F673

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00290.2012

关键词

kidney-specific WMK1; potassium adaptation; sodium; thick ascending limb

资金

  1. National Institute of Diabetes and Digestive and Kidney Diseases [DK-41612, DK-59530, DK-079328]
  2. Ministry of Defense, Taiwan

向作者/读者索取更多资源

Cheng CJ, Truong T, Baum M, Huang CL. Kidney-specific WNK1 inhibits sodium reabsorption in the cortical thick ascending limb. Am J Physiol Renal Physiol 303: F667-F673, 2012. First published July 11, 2012; doi: 10.1152/ajprenal.00290.2012.-Kidney-specific WNK1 (KS-WNK1) is a variant of full-length WNK1. Previous studies have reported that KS-WNK1 is predominantly expressed in the distal convoluted tubule (DCT) where it regulates sodium-chloride cotransporter. The role of KS-WNK1 in other nephron segments is less clear. Here, we measured the expression of KS-WNK1 transcript in microdissected renal tubules and found that KS-WNK1 was most abundant in the DCT, followed by cortical thick ascending limb (cTAL), connecting tubule, and cortical collecting duct. A high K+ diet enhanced the expression of KS-WNK1 in the DCT and cTAL, selectively. It has been reported that a high-K diet suppresses Na+ reabsorption in TAL. To understand the role of KS-WNK1 in Na+ transport in cTAL and the regulation by dietary K+, we examined Na+ reabsorption using in vitro microperfusion in cTAL isolated from KS-WNK1-knockout mice and wild-type littermates fed either a control-K+ or high-K+ diet. Furosemide-sensitive Na+ reabsorption in cTAL was higher in KS-WNK1-knockout (KO) mice than in wild-type. A high-K+ diet inhibited Na+ reabsorption in cTAL from wild-type mice, but the inhibition was eliminated in KS-WNK1-KO mice. We further examined the role of KS-WNK1 using transgenic mice that overexpress KS-WNK1. Na+ reabsorption in cTAL was lower in transgenic than in wild-type mice. In whole animal clearance studies, a high-K+ diet increased daily urine volume and urinary Na+ and K+ excretion in wild-type mice, which was blunted in KS-WNK1-KO mice. Thus KS-WNK1 inhibits Na+ reabsorption in cTAL and mediates the inhibition of Na+ reabsorption in the segment by a high-K diet.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据