4.4 Article

Role of Human UDP-Glucuronosyltransferases in the Biotransformation of the Triazoloacridinone and Imidazoacridinone Antitumor Agents C-1305 and C-1311: Highly Selective Substrates for UGT1A10

期刊

DRUG METABOLISM AND DISPOSITION
卷 40, 期 9, 页码 1736-1743

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/dmd.112.045401

关键词

-

资金

  1. National Institutes of Health National Institute of General Medical Sciences [GM075893]
  2. Ministry of Science and Higher Education (Poland) [N401 159 32/3045]
  3. European Union within European Social Foundation, project Development of Interdisciplinary Doctoral Studies
  4. Sigrid Juselius Foundation

向作者/读者索取更多资源

5-Diethylaminoethylamino-8-hydroxyimidazoacridinone, C-1311 (NSC-645809), is an antitumor agent shown to be effective against breast cancer in phase II clinical trials. A similar compound, 5-dimethylaminopropylamino-8-hydroxytriazoloacridinone, C-1305, shows high activity against experimental tumors and is expected to have even more beneficial pharmacological properties than C-1311. Previously published studies showed that these compounds are not substrates for cytochrome P450s; however, they do contain functional groups that are common targets for glucuronidation. Therefore, the aim of this work was to identify the human UDP-glucuronosyl-transferases (UGTs) able to glucuronidate these two compounds. High-performance liquid chromatography analysis was used to examine the activities of human recombinant UGT1A and UGT2B isoforms and microsomes from human liver [human liver microsomes (HLM)], whole human intestinal mucosa [human intestinal microsomes (HIM)], and seven isolated segments of human gastrointestinal tract. Recombinant extrahepatic UGT1A10 glucuronidated 8-hydroxyl groups with the highest catalytic efficiency compared with other recombinant UGTs, V-max/K-m = 27.2 and 8.8 mu l . min(-1) . mg protein(-1), for C-1305 and C-1311, respectively. In human hepatic and intestinal microsomes (HLM and HIM, respectively), high variability in UGT activities was observed among donors and for different regions of intestinal tract. However, both compounds underwent UGT-mediated metabolism to 8-O-glucuronides by microsomes from both sources with comparable efficiency; V-max/K-m values were from 4.0 to 5.5 mu l . min(-1) . mg protein(-1). In summary, these studies suggest that imid azoacridinone and triazoloacridinone drugs are glucuronidated in human liver and intestine in vivo and may form the basis for future translational studies of the potential role of UGTs in resistance to these drugs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据