4.3 Article

Top tether effectiveness during side impacts

期刊

TRAFFIC INJURY PREVENTION
卷 19, 期 -, 页码 S146-S152

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15389588.2017.1397643

关键词

LATCH; top tether; child safety; child restraint system; side impact

资金

  1. National Science Foundation (NSF) Center for Child Injury Prevention Studies at the Children's Hospital of Philadelphia (CHOP)
  2. Ohio State University (OSU)

向作者/读者索取更多资源

Objective: Few studies have looked at the effectiveness of the top tether during side impacts. In these studies, limited anthropomorphic test device (ATD) data were collected and/or few side impact scenarios were observed. The goal of this study was to further understand the effects of the top tether on ATD responses and child restraint system (CRS) kinematics during various side impact conditions.Methods: A series of high-speed near-side and far-side sled tests were performed using the FMVSS213 side impact sled buck and Q3s ATD. Tests were performed at both 10 degrees and 30 degrees impacts with respect to the pure lateral direction. Two child restraints, CRS A and CRS B, were attached to the bench using flexible lower anchors. Each test scenario was performed with the presence and absence of a top tether. Instrumentation recorded Q3s responses and CRS kinematics, and the identical test scenarios with and without a top tether attachment were compared.Results: For the far-side lateral (10 degrees) and oblique (30 degrees) impacts, top tether attachment increased resultant head accelerations by 8-38% and head injury criterion (HIC15) values by 20-140%. However, the top tether was effective in reducing lateral head excursion by 5-25%. For near-side impacts, the top tether resulted in less than 10% increases in both resultant head acceleration and HIC15 in the lateral impact direction. For near-side oblique impacts, the top tether increased HIC15 by 17.3% for CRS A and decreased it by 19.5% for CRS B. However, the injury values determined from both impact conditions were below current injury assessment reference values (IARVs). Additionally, the top tether proved beneficial in preventing forward and lateral CRS rotations.Conclusions: The results show that the effects of the top tether on Q3s responses were dependent on impact type, impact angle, and CRS. Tether attachments that increased head accelerations and HIC15 values were generally counterbalanced by a reduction in head excursion and CRS rotation compared to nontethered scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据