4.6 Article

Microbiome-related metabolite changes in gut tissue, cecum content and feces of rats treated with antibiotics

期刊

TOXICOLOGY AND APPLIED PHARMACOLOGY
卷 355, 期 -, 页码 198-210

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.taap.2018.06.028

关键词

Metabolomics; Metabolite profiling; Gut content and tissue; Gut microbiome; Repeated dose oral toxicity study; Antibiotics

向作者/读者索取更多资源

The metabolic functionality of the gut microbiota contributes to the metabolism and well-being of its host, although detailed insight in the microbiota's metabolism is lacking. Omics technologies could facilitate unraveling metabolism by the gut microbiota. In this study, we performed metabolite profiling of different matrices of the gut, after antibiotic treatment of rats in order to evaluate metabolite changes observed at different dose levels and in different sexes, and to identify the best tissue matrix for further investigations regarding an assessment of metabolic effects of new compounds with antibiotic activity. Three different antibiotics (vancomycin, streptomycin and roxithromycin) were administered orally to rats for 28 days according to the OECD 407 guideline with a subsequent metabolic profiling in feces, cecum content and gut tissue (jejunum, ileum, cecum, colon and rectum). The data were analyzed in the MetaMapo (R) Tox database. Treatment-related effects could be observed in the metabolite profile of feces and cecum content, but not of the different gut tissues. The metabolite profile showed compound specific effects on the microbiome. In line with the activity spectra of the antibiotics tested, vancomycin showed the largest effects, followed by roxithromycin and then by streptomycin for which changes were modest. In general, for all antibiotics the largest changes were observed for the classes of lipids (increase up to 94-fold), bile acids (increase up to 33-fold), amino acids (increase up to 200-fold) and amino acid related (increase up to 348-fold). The most relevant changes in metabolite values were similar in feces and cecum content and among sexes. The results of this targeted analysis indicate that the metabolic profiles of male and female animals in the gut microbiome are comparable. Concluding, taking other samples than feces does not add any extra information. Thus, as a non-invasive sampling method, feces provide a suitable matrix for studies on metabolism by the gut microbiota.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据