4.1 Article

Microfluidic Encapsulation Supports Stem Cell Viability, Proliferation, and Neuronal Differentiation

期刊

TISSUE ENGINEERING PART C-METHODS
卷 24, 期 3, 页码 158-170

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tec.2017.0368

关键词

stem cells; biomaterials; microfluidics; cell encapsulation; neuronal differentiation; spinal cord injury

资金

  1. European Research Council [243261]
  2. British Council Global Innovation Initiative
  3. Medical Research Council [G0901562]
  4. Cardiff Institute of Tissue Engineering and Repair
  5. Cardiff University
  6. Cardiff University Da Vinci Innovation Awards
  7. Medical Research Council [G0901562] Funding Source: researchfish
  8. MRC [G0901562] Funding Source: UKRI
  9. European Research Council (ERC) [243261] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

Stem cell encapsulation technology demonstrates much promise for the replacement of damaged tissue in several diseases, including spinal cord injury (SCI). The use of biocompatible microcapsules permits the control of stem cell fate in situ to facilitate the replacement of damaged/lost tissue. In this work, a novel customized microfluidic device was developed for the reproducible encapsulation of neural stem cells (NSCs) and dental pulp stem cells (DPSCs) within monodisperse, alginate-collagen microcapsules. Both cell types survived within the microcapsules for up to 21 days in culture. Stem cells demonstrated retention of their multipotency and neuronal differentiation properties upon selective release from the microcapsules, as demonstrated by high proliferation rates and the production of stem cell and neuronal lineage markers. When cell-laden microcapsules were transplanted into an organotypic SCI model, the microcapsules effectively retained the transplanted stem cells at the site of implantation. Implanted cells survived over a 10 day period in culture after transplantation and demonstrated commitment to a neural lineage. Our device provides a quick, effective, and aseptic method for the encapsulation of two different stem cell types (DPSCs and NSCs) within alginate-collagen microcapsules. Since stem cells were able to retain their viability and neural differentiation capacity within such microcapsules, this method provides a useful technique to study stem cell behavior within three-dimensional environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据