4.2 Article

Notochordal Cell Matrix As a Therapeutic Agent for Intervertebral Disc Regeneration

期刊

TISSUE ENGINEERING PART A
卷 25, 期 11-12, 页码 830-841

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2018.0026

关键词

notochordal cells; nucleus pulposus; regenerative medicine; extracellular matrix

资金

  1. AOSpine International through an AOSpine Research Network [SRN2011_11]
  2. Dutch Arthritis Foundation [LLP22]

向作者/读者索取更多资源

Notochordal cells (NCs) reside in the core of the healthy disc and produce soluble factors that can stimulate nucleus pulposus cells (NPCs). These NC-derived factors may be applied in intervertebral disc regeneration for treatment of low-back pain. However, identification of the active soluble factors is challenging. Therefore a novel approach to directly use porcine NC-rich NP matrix (NCM) is introduced. We explored porcine NCM's anabolic effects on bovine NPCs harvested from caudal discs of adolescent and adult (2-2.5 vs. 4-6 year old) cows. NC-conditioned medium (NCCM) and NCM were produced from porcine NC-rich NP tissue. Bovine NPCs were cultured in alginate beads for 4 weeks in base medium (BM), NCCM, and NCM to investigate NCM's regenerative potential. Porcine NCM increased glycosaminoglycan (GAG) content of both adolescent and adult bovine NPCs. This was through increased proliferation of adolescent bovine NPCs, whereas in adult bovine NPCs, it was mostly through increased GAG production per NPC. Furthermore, adolescent bovine NPCs were cultured in BM and porcine NCM treated with interleukin (IL)-1 to investigate NCM's potential in an inflammatory environment. Addition of IL-1 enhanced IL1 and CXCL8 (IL8) gene expression, while NCM diminished IL1 gene expression. IL-1 reduced GAG and DNA content, but the addition of NCM relative to BM improved GAG and DNA content. Altogether, porcine NCM exerts bovine NPC-age dependent effects, and NCM's anabolic effect on adult NPCs is stronger compared with NCCM. Furthermore, porcine NCM induced an anabolic response of bovine NPCs in an inflammatory environment and may have anti-inflammatory properties. Therefore, NCM has potential in a regenerative therapy for disc degeneration, and warrants additional in vivo studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据