4.2 Article

Nitro-Oleic Acid (NO2-OA) Release Enhances Regional Angiogenesis in a Rat Abdominal Wall Defect Model

期刊

TISSUE ENGINEERING PART A
卷 24, 期 11-12, 页码 889-904

出版社

MARY ANN LIEBERT, INC
DOI: 10.1089/ten.tea.2017.0349

关键词

angiogenesis; abdominal wall defect model; nitro-oleic acid; elastomeric patch; dermal ECM

资金

  1. RiMED Foundation
  2. NIH [R01-HL058115, R01-HL64937]
  3. Commonwealth of Pennsylvania
  4. Pitt EXCEL Program
  5. Italian Ministry for Education and Research (MIUR)

向作者/读者索取更多资源

Ventral hernia is often addressed surgically by the placement of prosthetic materials, either synthetic or from allogeneic and xenogeneic biologic sources. Despite advances in surgical approaches and device design, a number of postsurgical limitations remain, including hernia recurrence, mesh encapsulation, and reduced vascularity of the implanted volume. The in situ controlled release of angiogenic factors from a scaffold facilitating abdominal wall repair might address some of these issues associated with suboptimal tissue reconstruction. Furthermore, a biocomposite material that combines the favorable mechanical properties achievable with synthetic materials and the bioactivity associated with xenogeneic tissue sources would be desirable. In this report, an abdominal wall repair scaffold has been designed based on a microfibrous, elastomeric poly(ester carbonate)urethane urea matrix integrated with a hydrogel derived from decellularized porcine dermis (extracellular matrix [ECM] gel) and poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with nitro-oleic acid (NO2-OA). NO2-OA is an electrophilic fatty acid nitro-alkene derivative that, under hypoxic conditions, induces angiogenesis. This scaffold was utilized to repair a rat abdominal wall partial thickness defect, hypothesizing that the nitro-fatty acid release would facilitate increased angiogenesis at the 8-week endpoint. The quantification of neovascularization was conducted by novel methodologies to assess vessel morphology and spatial distribution. The repaired abdominal wall defects were evaluated by histopathologic methods, including quantification of the foreign body response and cellular ingrowth. The results showed that NO2-OA release was associated with significantly improved regional angiogenesis. The combined biohybrid scaffold and NO2-OA-controlled release strategy also reduced scaffold encapsulation, increased wall thickness, and enhanced cellular infiltration. More broadly, the three components of the composite scaffold design (ECM gel, polymeric fibers, and PLGA microparticles) enable the tuning of performance characteristics, including scaffold bioactivity, degradation, mechanics, and drug release profile, all decisive factors to better address current limitations in abdominal wall repair or other soft tissue augmentation procedures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据